승 인 원 (APPROVAL SHEET)

품 , 목	SMPS
품 명	CSF100-DW
Rev. No.	Α

승	인 (APPROVED)	검 토
	E (ATTHOVED)	Inspected by:
		심 사
		Checked by :
		승 인
		Approved by:
		날 짜
		Date :

상기와 같이 승인원을 제출하오니 검토하시어 승인하여 주시기 바랍니다.

2008 년 12월 09일

작 성: 주 임 김병우 **게 시시** 검 토: 선 임 이동찬 **시** 승 인: 상 무 장재하 **시 시 ()**

서울특별시 성동구 성수2가 3동 273-1

TEL: (02) 461-1524

FAX:

(02) 463-6398

CONTENTS

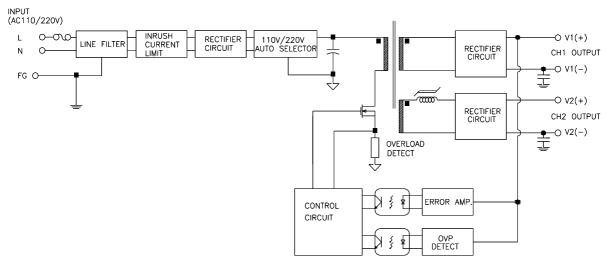
1.	 3
2.	 4-5
3. User's guide	 6-9
4. Dimension	 10
5.	11 - 13

Product.	SMPS	Date.	2008.12.09	
Model.	CSF100-DW	Rev.	А	
Customer.	Standard	Page.	1	

No.	Date.		Rev.
	2008.12.09	(All Page	

SPECIFICATIONS

Product.	SMPS	Date.	2008.12.09
Model.	CSF100-BDW	Rev.	А
Customer.	STANDARD	Page.	1 / 2


MODEL/CHANNEL			Unit.	CI	- 11	С	H2	-	-	
INPUT	Voltage , Frequer	псу	[٧]	AC100-120	/200~240V(AC85~132/180~264V),50/60Hz(47-63)orDC240~370V(Auto-Selectable)				
	Current	110V	F A 3				2.4, Ic	0 = 100%		
	Тур.	220V	[A]				1.4, Ic	0 = 100%		
	Efficiency	110V	Fa/ 3				_			
	Тур.	220V	[%]				7	75		
	Power factor	110V						-		
	Тур.	220V	-					-		
	Inrush Current	110V	F A 1			20 (Ta=25	, Cold Start)		
	Тур.	220V	[A]			40 (Ta=25	, Cold Start)		
	Leakage Current	110V	[A]				0.	35		
	Тур.	220V	[mA]	0.75						
OUTPUT	Norminal Voltage		[٧]	5	.0	12	2.0	-	-	
	Setting Voltage R	ange	[٧]	4.95	5.05	11.76	12.24	-	-	
	current		[A]	1.0	10.0	4	.0	-	-	
	Line Regulations		[mV]	25		6	60	-	-	
	Load Regulations	3	[mV]	5	60	1	20	-	-	
	Cross Regulation	s	[mV]	50		120		-	-	
	Temperature Drif	t	[mV]	7	'5	1	80	-	-	
	Ripple Max.		[mV]	80		120		-	-	
	Ripple & Noise M	lax.	[mV]	1:	20	150		-	-	
	Turn-on Time Ty	p.	[ms]			500 Max (AC IN 100V, Io=100%)				
	Hold-up Time Ty	p.	[ms]			17 ty	p (AC IN	100V, Io=100%)		
Function	Over Voltage Pro	tection	[٧]	Works	at 115	140% o	f rating	(CH1)		
	Over Current Pro	tection	[A]	Works	at over	110% of	rating a	and recovers auto	matically	
	Remote ON.OFF		-		-		-	-	-	
	Remote Sensing		-		-		-	-	-	
	Power Fail Signal		-		-		-	-	-	
	Parallel/Series Ope	ration	-		-		-	-	-	
	Cooling / O.T.P		-		-		-	-	-	
Electrical	(1) Input - Outp	ut	-	AC 3.0	OKV 1min,	cut-off	: 20mA	/ DC 500V 100	MΩ	
Isolation	(2) Input - F.G		-	AC 2.0	OKV 1min,	cut-off	: 20mA	/ DC 500V 100	MΩ	
	(3) Output - F.G)	-	AC 0.5	SKV 1min,	cut-off	:100mA	/ DC 500V 100	MΩ	
Environment	Operating temp. &	Humidity	-	- 10 50 (Required Derating), 20 90% RH (Non 0			Non Condensing)			
	Storage temp. & Hu	umidity	-	- 20	75 ,	20 90	% RH (No	on Condensing)		
	Vibration		-	10 55H	Hz at 1G	3minutes	period,	30minutes along	X,Y and Z axis	
Dimension	Size(WxHxD) / W	eight	mm / g	n / g 82 * 45 * 175(190) / 560				0		
Safety	-		-	-						
Emission	Conducted Emiss	sion	-					-		
	ĺ		1	I				_		

SPECIFICATIONS

Product.	SMPS	Date.	2008.12.09
Model.	CSF100-BHW	Rev.	Α
Customer.	STANDARD	Page.	2 / 2

	MODEL/CHANNEL				 1	С	H2	-		-
INPUT	Voltage, Frequer	псу	[٧]	AC100-120	/200~240V((AC85~132/180~264V),50/60Hz(47-63)orDC240~370V(Auto-Selectable)				
	Current	110V	F A 1				2.4, lc	0 = 100%		
	Тур.	220V	[A]				1.4, lo	0 = 100%		
	Efficiency	110V	F0/ 3			75				
	Тур.	220V	[%]				,	' 5		
	Power factor	110V						-		
	Тур.	220V	-					-		
	Inrush Current	110V	[A]			20 (Ta=25	, Cold Start))	
	Тур.	220V	[A]			40 (Ta=25	, Cold Start))	
	Leakage Current	110V	[m/l]				0.	35		
	Тур.	220V	[mA]				0.	75		
OUTPUT	Norminal Voltage		[٧]	5	. 0		24	-		-
	Setting Voltage R	ange	[٧]	4.95	5.05	21.6	24.24	-		-
	current		[A]	1.0	10.0	2	2.0	-		-
	Line Regulations		[mV]	25 50		120 240		-		-
	Load Regulations	1	[mV]					-		-
	Cross Regulation	s	[mV]	5	0	240		-		-
	Temperature Drift	t	[mV]	7	5	360		-		-
	Ripple Max.		[mV]	8	0	120 150		-		-
	Ripple & Noise M	ax.	[mV]	1:	20			-		-
	Turn-on Time Ty	p.	[ms]			500 Max (AC IN 100V, Io=100%)				
	Hold-up Time Ty	p.	[ms]			17 ty	rp (AC IN	100V, Io=100	%)	
Function	Over Voltage Pro	tection	[٧]	Works	at 115	140% c	of rating	(CH1)		
	Over Current Prof	tection	[A]	Works	at over	110% of	rating a	and recovers a	utomat	ically
	Remote ON.OFF		-		-		-	-		-
	Remote Sensing		-		-		-	-		-
	Power Fail Signal		-		-		-	-		-
	Parallel/Series Ope	ration	-	,	-		-	-		-
	Cooling / O.T.P		-		-		-	-		-
Electrical	(1) Input - Outp	ut	-	AC 3.0	KV 1min,	cut-of	f: 20mA	/ DC 500V	100ΜΩ	
Isolation	(2) Input - F.G		-	AC 2.0	KV 1min,	cut-of	f: 20mA	/ DC 500V	100ΜΩ	
	(3) Output - F.G	i	-	AC 0.5	KV 1min,	cut-of	f:100mA	/ DC 500V	100ΜΩ	
Environment	Operating temp. &	Humidity	-	- 10	50 (R	equired	Derating)), 20 90% R	RH (Non	Condensing)
	Storage temp. & Hu	umidity	-	- 20 75 , 20 90% RH (on Condensing)		
	Vibration	10 55H	lz at 1G	3minutes	s period,	30minutes alo	ong X,Y	and Zaxis		
Dimension	Size(WxHxD) / W	eight	mm / g	8	32 * 45 *	175(190	0)	/	560	
Safety	-		-	-						
Emission	Conducted Emiss	sion	-					-		
	-		-					-		

1. BLOCK DIAGRAM

2. Terminal Connection

Mark	Pin Connection	Function				
N	AC N	SMPS AC	Terminal			
L	AC L	SMPS AC	Terminal (FUSE IN LINE)			
F.G	Frame ground	SMPS AC	, CASE			
-V2	DC Output (-)	DC (-)	Terminal (CH2)			
+V2	DC Output (+)	DC (+)	Terminal (CH2)			
-V1	DC Output (-)	DC (-)	Terminal (CH1)			
+V1	DC Output (+)	DC (+)	Terminal (CH1)			

3. Function

0

115%

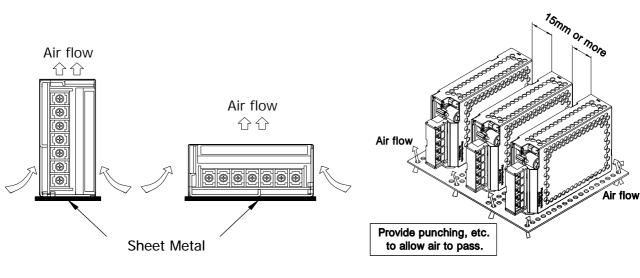
3-1. (Adjustable output voltage range)

0 7 ± ±5%
.(CH1 7)
,

3-2. O.C.P (Over Current Protection)

0 SMPS 7 7 110%
.
3-3. O.V.P (Over Voltage Protection)

o AC 3 . A/S

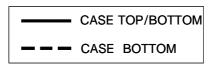

가

SMPS

.(CH2 OVP

4. (Mounting method)

- 4-1.
- 0 .
- 0 .
- 0 .


(1) MOUNT A

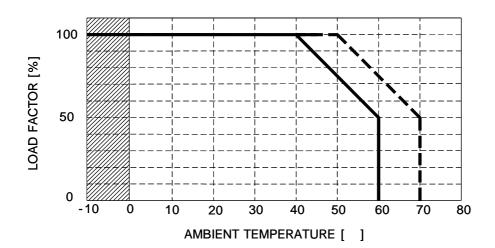
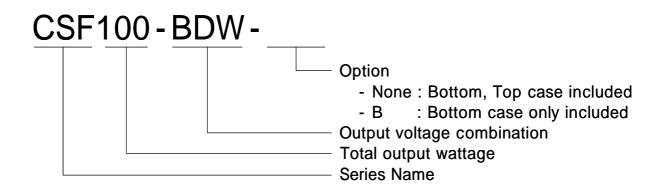

(2) MOUNT B

Fig 1. Fig 2.

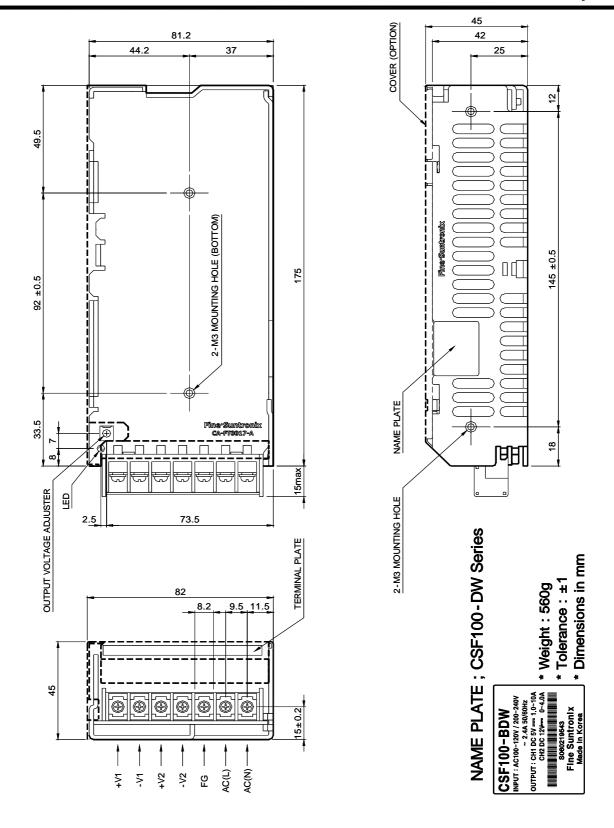
5. Output derating curve

- 5-1. (Mount A, Mount B) TOP CASE Output derating curve .
- 5-2. Output derating curve (Mount A with top case, Convection cooling)

o --


-

7.


0 , , . . .

0 2 ,

8. ORDERING INFORMATION

CSF100W Dual Output


```
INPUT (
          )
o Input Voltage (
                       ):
                               AC(
                                            (110VAC, 220VAC)
                                                                          DC(
                                      )
                          (5VDC, 12VDC
                                          )
o Input Current (
                       ):
                                     가
o Input Wattage (
                        ): SMPS
o Input Frequency (
                                                      50Hz, 60Hz(
                             ):
                                    AC(
                                                                        60Hz)
o Input Efficiency (
                      ):
o Inrush Current (
                        ):
o Leakage Current (
                                                    Capacitor
                          ):
                                      1
o Power Factor (
                   ):
OUTPUT (
            )
o Output Voltage (
                         ):
                                 DC(
                                        )
o Output Current (
                         ):
                                DC(
o Output Wattage (
                          ): SMPS가
                                             DC
                                                                  Χ
                                                         (
o Line Regulation (
                                           (AC
                                                    DC)
                                ):
                                                        DC(
o Load Regulation (
                                              min~100%
                                                                                 DC(
                                 ):
o Cross Regulation (
                                             SMPS
                                  ):
                                                                  min~100%
                                                     DC(
o Temperature Drift (
                                ): SMPS
                                                                          DC(
                                                                                 )
o Ripple & Noise (
                                   DC(
                            ):
                                          )
o Turn on Time (
                                ):
                                                                DC(
                                                                               90%
                                                                        )
o Hold up Time (
                                                                DC(
                                                                        )
                                                                                90%
                                ):
```

11

```
FUNCTION ( )
                                ): 가
o Over Current Protection (OCP,
                                                               SMPS
                     SMPS
                                 ) : SMPS가
o Over Voltage Protection (OVP,
                                                         DC(
                                                SMPS가 DC( )
o Over Temperature Protection (OTP,
                                    ):
                                               SMPS
                                                            가
o Remote ON/OFF (RC or CNT, ):
                                    SMPS
                                                 ON/OFF
o Remote Sensing (+S, -S,
                         ): SMPS
                                           가
o Load Detect (LD,
                      ):
o Adjustable Output Voltage (VR, ): SMPS
  가
           TRM
o Power Fail Signal (P.F,
       P.F
                          가
  1)
        P.F
  2)
              : SMPS
o Low Voltage alarm (LV alarm, ): SMPS
o Power alarm (PR alarm, ): SMPS AC
                                             , FAN
              . (P.F, LV alarm, FAN alarm )
o Parallel / Series Operation ( / ): SMPS
                     가
o Voltage Balance (VB,
                         ):
o Current Balance (CB, PC
                       ):
                                      가
     가
o Frame Gnd(FG), AC Gnd(ACG): Frame Ground, AC Ground
```

```
ELECTRICAL ISOLATION ( )
o Electrically Isolated Input-Output ( -
                                            ):
                                                   AC(
  DC( )
o Electrically Isolated Input-Case, FG ( -
                                                         ):
                                                               AC( )
o Electrically Isolated Output-Case, FG ( -
                                                          ):
                                                                DC(
ENVIRONMENT ( )
o Operating Temp and Humidity (
                              & ): SMPS
o Storage Temp and Humidity ( &
                                   ): SMPS
o Vibration ( ): SMPS가
ETC ( )
o Safety (
           ):
o Safety Regulation ( ):
o Line Conducted RF Voltage (
                                  ):
```

Evaluation Data

품 , 목	SMPS
품 명	CSF100-DW
Rev. No.	Α

2008 년 12월 09일

서울특별시 성동구 성수2가 3동 273-1

TEL:

(02) 461-1524

FAX:

(02) 463-6398

Evaluation data

1. CSF100-BDW

- 1-1. Input characteristics
 - . Inrush Current Characteristics
 - . Inrush Current & Efficiency characteristics

1-2. Output characteristics

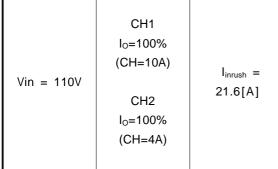
- . Line & Load Regulation Characteristics
- . Dynamic Load Response Characteristics
- . Ripple & Noise Characteristics
- . Turn on Time Characteristics
- . Hold up Time Characteristics
- . Over Current Protection Characteristics
- . Over Voltage Protection Characteristics

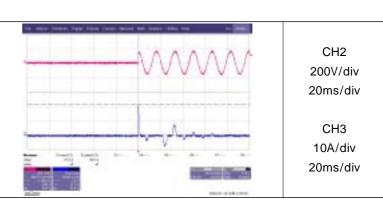
2. CSF100-BHW

- 2-1. Input characteristics
 - . Inrush Current Characteristics
 - . Inrush Current & Efficiency characteristics

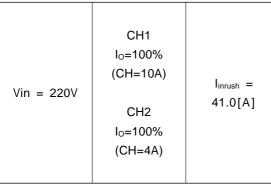
2-2. Output characteristics

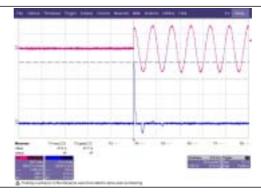
- . Line & Load Regulation Characteristics
- . Dynamic Load Response Characteristics
- . Ripple & Noise Characteristics
- . Turn on Time Characteristics
- . Hold up Time Characteristics
- . Over Current Protection Characteristics
- . Over Voltage Protection Characteristics


1-1. CSF100-BDW Input characteristics


(1) Oscilloscope: WAVEPRO 7000 (LeCroy)

CH2: ADP305 (High voltage differential probe)


CH3: AP015 (Current probe)


(1) Inrush current characteristics (110V)

(2) Inrush current characteristics (220V)

CH2 200V/div 20ms/div CH3 10A/div

20ms/div

(3) Inrush current & Efficiency characteristics

Load	Input Voltage	85V	110V	132V	170V	220V	264V
Io=Min% (CH1=1A,	Input Current[A]	0.14	0.13	0.13	0.08	0.06	0.06
CH2=0A)	Efficiency[%]	-	-	-	-	-	-
Io=50% (CH1=5A,	Input Current[A]	1.12	0.93	0.82	0.59	0.49	0.44
(CH1=5A, CH2=2A)	Efficiency[%]	75.9	75	72.9	78.6	76	73.6
lo=100% (CH1=10A,	Input Current[A]	2.16	1.74	1.52	1.18	0.98	0.86
(CH1=10A, CH2=4A)	Efficiency[%]	77.1	78.5	78.2	81.5	80.6	79.6

1-2. CSF100-BDW Output characteristics

(1) Digital Multimeter: FLUKE 189 MULTIMETER

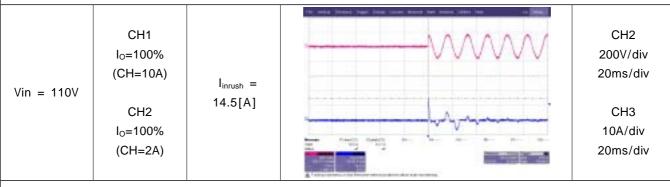
(1) Line & Load Regulation Characteristics

Input Voltage Load		85V	110V	132V	170V	220V	264V	Line Regulation [mV]
Io=Min% (CH1=1A, CH2=0A)	CH1	5.004	5.004	5.004	5.004	5.004	5.004	0
	CH2	12.088	12.085	12.084	12.083	12.081	12.081	7
Io=50% (CH1=5A, CH2=2A)	CH1	5.000	4.999	4.998	5.000	4.999	4.998	2
	CH2	12.085	12.083	12.081	12.081	12.079	12.079	6
Io=100% (CH1=10A, CH2=4A)	CH1	4.995	4.994	4.993	4.995	4.994	4.992	3
	CH2	12.083	12.081	12.079	12.079	12.078	12.077	6
Load Regulation [mV]	CH1	9	10	11	9	10	12	-
	CH2	5	4	5	4	3	4	-

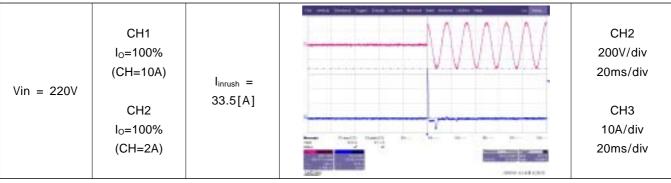
1-3. CSF100-BDW Output characteristics (1) Oscilloscope: WAVEPRO 7000 (LeCroy) CH2: PP005A (Passive Voltage probe) CH3: AP015 (Current probe) (1) Dynamic Load Response Characteristics(100Hz) CH2 CH1 50mV/div CH1 $+V_{pk}=38[mV]$ I_O=10% 100% 5ms/div (0.76%)Vin = 220V CH3 CH2 $-V_{pk}=32.5[mV]$ I₀=100% 5A/div (0.65%)5ms/div CH2 CH1 200mV/div CH1 $+V_{pk}=29[mV]$ I₀=10% 5ms/div (0.58%)Vin = 220VCH2 CH3 $-V_{pk} = 33.5 [mV]$ I₀=0% 100% 5A/div (0.67%) 5ms/div ----(2) Dynamic Load Response Characteristics(1KHz) CH2 CH2 CH1 50mV/div $+V_{pk}=172[mV]$ I_O=10% 100% 500us/div (1.43%)Vin = 220V CH2 CH3 $-V_{pk}=356[mV]$ $I_0 = 100\%$ 5A/div (2.97%)500us/div CH2 CH2 CH1 200mV/div $+V_{pk}=102[mV]$ $I_0 = 10\%$ 500us/div (0.85%)Vin = 220V CH3 CH2 $-V_{pk}=82[mV]$ I₀=0% 100% 5A/div (0.68%)500us/div

1-4 CSF	=100 - BDW	Output charac	teristics	
		VAVEPRO 7000		
(1) 000	•		ve Voltage probe)	
		•	Voltage probe)	
	CH3 : ADF	305 (High vol	tage differential probe)	
	CH4 : BNC	Cable, Band	Width: 200MHz	
(1) Rippl	e & Noise c	haracteristics		
Vin = 220V	CH1 I _O =100% (CH=10A) CH2 I _O =100% (CH=4A)	CH1 Ripple&NOISE : 38.2/62[mV]		CH4 20mV/div 5us/div
Vin = 220V	CH1 I _O =100% (CH=10A) CH2 I _O =100% (CH=4A)	CH2 Ripple&NOISE : 17.8/37[mV]		CH4 20mV/div 5us/div
(2) Turn	on time cha	racteristics		
Vin = 85V	CH1 I ₀ =100% (CH=10A)	CH1 Turn on time = 626.2[ms]		CH1 2V/div CH2 10V/div
VIN = 85V	CH2 I _O =100% (CH=4A)	CH2 Turn on time = 623[ms]	THE THE PARTY STATES AND THE P	CH3 200V/div 100ms/div()
(3) Hold	up time cha	aracteristics		
Vin = 85V	CH1 I _O =100% (CH=10A)	CH1 Hold up time = 10.8[ms]	-www.ww	CH1 2V/div CH2
	CH2 I _O =100% (CH=4A)	CH2 Hold up time = 14.4[ms]	Charles Charle	10V/div CH3 200V/div 50ms/div()

1-5. CSF100-BDW Output characteristics (1) Oscilloscope: WAVEPRO 7000 (LeCroy) CH2: AP015 (Current probe) CH3: ADP305 (High voltage differential probe) (2) Oscilloscope: WAVEPRO 7000 (LeCroy) CH2: PP005A (Passive Voltage probe) (1) Over Current protection characteristics CH2 CH1 CH1 4A/div l₀=0%∼가 OCP= 5ms/div Vin = 220V15.61[A] CH2 $I_{\text{OUT}} =$ CH3 I₀=100% 1V/div 156.1[%] (CH=4A) 5ms/div CH1 CH2 I₀=100% 1.5A/div (CH=10A) 2ms/div CH2 Vin = 220VOCP= 5.75[A] CH3 CH2 $I_{OUT} = 144[\%]$ I₀=0%~가 2V/div 2ms/div (2) Over voltage protection characteristics CH1 CH1 I₀=10% CH2 OVP = Vin = 220V2V/div 6.64[V] CH2 20ms/div $V_{OUT}=132.8[\%]$ $I_0 = 100\%$


2-1. CSF100-BHW Input characteristics

(1) Oscilloscope: WAVEPRO 7000 (LeCroy)


CH2: ADP305 (High voltage differential probe)

CH3: AP015 (Current probe)

(1) Inrush current characteristics (110V)

(2) Inrush current characteristics (220V)

(3) Inrush current & Efficiency Characteristics

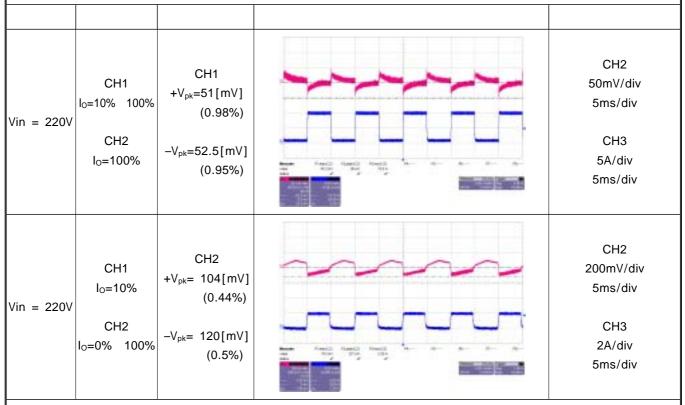
Load	85V	110V	132V	170V	220V	264V	
Io=Min% (CH1=1A, CH2=0A)	Input Current[A]	0.15	0.13	0.13	0.07	0.05	0.06
	Efficiency[%]	-	-	-	-	-	-
Io=50% (CH1=5A, CH2=1A)	Input Current[A]	1.12	0.95	0.83	0.61	0.52	0.45
	Efficiency[%]	76	74.5	72	78.5	75.3	71.8
Io=100% (CH1=10A, CH2=2A)	Input Current[A]	2.19	1.79	1.57	1.19	0.99	0.86
	Efficiency[%]	78.4	79.1	78.4	82	81.2	79.6

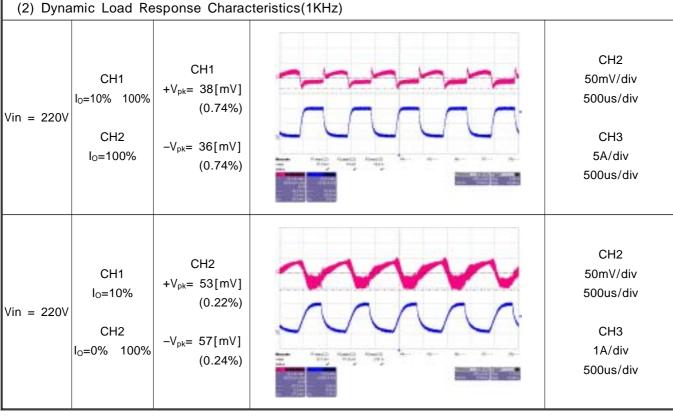
2-2. CSF100-BHW Output characteristics

(1) Digital Multimeter: FLUKE 189 MULTIMETER

(1) Line & Load Regulation Characteristics

Input Voltage Load		85V	110V	132V	170V	220V	264V	Line Regulation [mV]
Io=Min% (CH1=1A, CH2=0A)	CH1	5.003	5.003	5.003	5.003	5.002	5.002	1
	CH2	24.128	24.126	24.125	24.124	24.123	24.122	6
Io=50% (CH1=5A, CH2=1A)	CH1	4.998	4.998	4.997	4.998	4.997	4.996	2
	CH2	24.126	24.125	24.123	24.122	24.122	24.121	5
Io=100% (CH1=10A, CH2=2A)	CH1	4.994	4.992	4.991	4.993	4.992	4.991	3
	CH2	24.125	24.124	24.122	24.122	24.120	24.120	5
Load Regulation [mV]	CH1	9	11	12	10	10	11	-
	CH2	3	2	3	2	3	2	-


2-3. CSF100-BHW Output characteristics


(1) Oscilloscope: WAVEPRO 7000 (LeCroy)

CH2: PP005A (Passive Voltage probe)

CH3: AP015 (Current probe)

2-4. CSF100-BHW Output characteristics								
(1) Oscilloscope: WAVEPRO 7000 (LeCroy)								
CH1: PP007-WS (Passive Voltage probe)								
CH2: PP005A (Passive Voltage probe)								
CH3 : ADP305 (High voltage differential probe)								
	CH4 : BNC	Cable, Band	Width: 200MHz					
(1) Ripple & Noise characteristics								
Vin = 220V	CH1 I _O =100% (CH=10A) CH2 I _O =100% (CH=2A)	CH1 Ripple&NOISE : 42.6/62[mV]		CH4 20mV/div 5us/div				
Vin = 220V	CH1 I _O =100% (CH=10A) CH2 I _O =100% (CH=2A)	CH2 Ripple&NOISE : 18/47[mV]		CH4 20mV/div 5us/div				
(2) Turn	on time cha	racteristics						
	CH1 I ₀ =100% (CH=10A)	CH1 Turn on time = 613.6[ms]		CH1 2V/div CH2				
Vin = 85V	CH2 I _O =100% (CH=2A)	CH2 Turn on time = 620.2[ms]	Francis Committee of the Committee of th	20V/div CH3 200V/div 100ms/div()				
(3) Hold up time characteristics								
Vin = 85V	CH1 I _O =100% (CH=10A)	CH1 Hold up time = 14.2[ms]	-vvvvvvvv	CH1 2V/div CH2 20V/div				
	CH2 I ₀ =100% (CH=2A)	CH2 Hold up time = 16.6[ms]		CH4 200V/div 50ms/div()				

2-5. CSF100-BHW Output characteristics (1) Oscilloscope: WAVEPRO 7000 (LeCroy) CH2: AP015 (Current probe) CH3: ADP305 (High voltage differential probe) (2) Oscilloscope: WAVEPRO 7000 (LeCroy) CH2: PP005A (Passive Voltage probe) (1) Over Current protection characteristics CH2 CH1 CH1 5A/div l₀=0%∼가 OCP=15.08[A] 5ms/div Vin = 220VCH2 I_{OUT} CH3 I₀=100% =150.8[%] 1V/div (CH=2A) 5ms/div CH2 CH1 CH2 0.5A/div I₀=100% OCP=2.79[A] 5ms/div (CH=10A) Vin = 220VCH3 I_{OUT} CH2 =139.5[%] 5V/div I₀=0%~가 5ms/div (2) Over voltage protection characteristics CH1 I₀=10% CH1 CH1 OVP = Vin = 220V 2V/div CH2 6.74[V] 20ms/div I₀=100% $V_{OUT} = 135[\%]$ (CH=2A)